| Home | Trees | Indices | Help | 
 | 
|---|
|  | 
  object --+        
           |        
Distribution --+    
               |    
             LDA --+
                   |
                  OnlineLDA
An implementation of an online trust region method for latent Dirichlet allocation.
>>> model = OnlineLDA( num_words=7000, num_topics=100, num_documents=10000, alpha=.1, eta=.3)
alpha can be a scalar or an array with one entry for each
  topic.
| Instance Methods | |||
| 
 | |||
| float | 
 | ||
| list | 
 | ||
| float | 
 | ||
| tuple | 
 | ||
| Inherited from  | |||
| Properties | |
| alpha Controls Dirichlet prior over topic weights, $\theta_k$. (Inherited from trlda.models.LDA) | |
| eta Controls Dirichlet prior over topics, $\beta_{ki}$. (Inherited from trlda.models.LDA) | |
| lambdas Parameters governing beliefs over topics, $\beta_{ki}$. (Inherited from trlda.models.LDA) | |
| num_documents Number of documents in the complete dataset. | |
| num_topics Number of topics. (Inherited from trlda.models.LDA) | |
| num_words Number of words. (Inherited from trlda.models.LDA) | |
| update_count Number of parameter updates. | |
| Inherited from  | |
| Method Details | 
| 
 Updates beliefs over parameters. Set  By default, the learning rate is automatically set to $$\rho_t = (\tau + t)^{-\kappa},$$ where $t$ is the number of calls to this function. 
 See Also: update_count | 
| Home | Trees | Indices | Help | 
 | 
|---|
| Generated by Epydoc 3.0.1 on Sun May 24 18:19:15 2015 | http://epydoc.sourceforge.net |